====== K80 ======
pacman -S nvidia-470xx-dkms nvidia-470xx-settings nvidia-470xx-util
pacman -U https://archive.archlinux.org/packages/c/cuda/cuda-11.4.2-1-x86_64.pkg.tar.zst
nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.256.02 Driver Version: 470.256.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:03:00.0 Off | 0 |
| N/A 53C P0 61W / 149W | 0MiB / 11441MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K80 Off | 00000000:04:00.0 Off | 0 |
| N/A 41C P0 72W / 149W | 0MiB / 11441MiB | 86% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
# cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX x86_64 Kernel Module 470.256.02 Thu May 2 14:37:44 UTC 2024
GCC version: gcc version 14.1.1 20240522 (GCC)
# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Sun_Aug_15_21:14:11_PDT_2021
Cuda compilation tools, release 11.4, V11.4.120
Build cuda_11.4.r11.4/compiler.30300941_0
samples
git clone --depth 1 --branch v11.4.1 https://github.com/NVIDIA/cuda-samples.git /opt/cuda-samples
cd /opt/cuda-samples
cd Samples/deviceQuery/
make
deviceQuery
cd /opt/cuda-samples/bin/x86_64/linux/release
./deviceQuery
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 2 CUDA Capable device(s)
Device 0: "Tesla K80"
CUDA Driver Version / Runtime Version 11.4 / 11.4
CUDA Capability Major/Minor version number: 3.7
Total amount of global memory: 11441 MBytes (11997020160 bytes)
(013) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Max Clock rate: 824 MHz (0.82 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 114688 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: No
Supports Cooperative Kernel Launch: No
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 1: "Tesla K80"
CUDA Driver Version / Runtime Version 11.4 / 11.4
CUDA Capability Major/Minor version number: 3.7
Total amount of global memory: 11441 MBytes (11997020160 bytes)
(013) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Max Clock rate: 824 MHz (0.82 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 114688 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: No
Supports Cooperative Kernel Launch: No
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 4 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
> Peer access from Tesla K80 (GPU0) -> Tesla K80 (GPU1) : Yes
> Peer access from Tesla K80 (GPU1) -> Tesla K80 (GPU0) : Yes
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.4, NumDevs = 2
Result = PASS
===== pytorch =====
pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cu118
python -c "import torch; print(torch.__version__); print(torch.cuda.is_available());"
# 2.3.1+cu118
# True
===== ultralitycs =====
pip install ultralytics
python -c "import ultralytics; print(ultralytics.utils.checks.cuda_is_available());"
# True