
2026/01/12 17:28 1/4 Doorbell

Galileo Labs - https://wiki.csgalileo.org/

Doorbell

ESP32CAM

Esphome camera component

Esphome RTSPserver github

Per la prima scrittura:

connettere uno dei pin di IO a GND, come mostrato in figura1.
attaccare l'USB2.
dare i permessi alla porta, esempio:3.

chmod 660 /dev/ttyUSB0

riavviare esphome4.
uploadare la configurazione5.

Per le scritture wireless non serve che GND sia connesso a un pin di IO

Configurazione base per camera e led

esphome:
 name: esp-citofono
 platform: ESP32
 board: esp32dev

Enable logging
logger:

Enable Home Assistant API
api:

https://fr.aliexpress.com/item/1005002488501278.html?spm=a2g0o.productlist.0.0.3fd216eftYmjNU&algo_pvid=1f7b861c-5dff-4e47-b28b-74e50af365fb&algo_exp_id=1f7b861c-5dff-4e47-b28b-74e50af365fb-8&pdp_ext_f=%7B%22sku_id%22%3A%2212000020840038573%22%7D
https://esphome.io/components/esp32_camera.html
https://github.com/crossan007/esphome/tree/feature/rtsp-server
https://wiki.csgalileo.org/_detail/projects/iotaiuto/esp32cam.png?id=projects%3Aiotaiuto%3Adoorbell

Last update: 2021/10/01 10:40 projects:iotaiuto:doorbell https://wiki.csgalileo.org/projects/iotaiuto/doorbell

https://wiki.csgalileo.org/ Printed on 2026/01/12 17:28

wifi:
 ssid: "wifi ssid"
 password: "password"

esp32_camera:
 name: Videocamera citofono
 external_clock:
 pin: GPIO0
 frequency: 20MHz
 i2c_pins:
 sda: GPIO26
 scl: GPIO27
 data_pins: [GPIO5, GPIO18, GPIO19, GPIO21, GPIO36, GPIO39, GPIO34, GPIO35]
 vsync_pin: GPIO25
 href_pin: GPIO23
 pixel_clock_pin: GPIO22
 power_down_pin: GPIO32
 max_framerate: 5 fps

Flashlight CHECK PIN
output:
 - platform: gpio
 pin: GPIO4
 id: gpio_4

light:
 - platform: binary
 output: gpio_4
 name: doorbell light

sensor:
 - platform: wifi_signal
 name: doorbell wifi signal
 update_interval: 30s
 - platform: uptime
 name: doorbell uptime

RTSP Server

Installazione del fork di esphome, che sostituirà esphome originale

mkdir esphome_rtsp
cd esphome_rtsp
git clone https://github.com/crossan007/esphome
cd esphome
checkout feature/rtsp-server
pip install .
esphome ~/config dashboard

2026/01/12 17:28 3/4 Doorbell

Galileo Labs - https://wiki.csgalileo.org/

Aggiungere alla configurazione di esp32cam:

esp32_camera:
 # id per rtsp server
 id: cam
 external_clock:
 pin: GPIO0
 ...
 ...

rtsp_server:
 port: 8675
 camera: cam

Visualizzare stream RTSP con VLC:
VLC menu -> Media -> Open network stream -> rtsp://indirizzo_ip_esp:8675

HTTP Server

In alternativa si può usare anche questo componente http e convertire successivamente in rtsp
quando lo stream passa per il raspberry. Nel mio caso stranamente ha dato risultati migliori.
https://github.com/ayufan/esphome-components#25-esp32_camera_web_server

Conversione del video

La camera manda una sequenza di immagini JPEG con framerate variabile. Per mostrarle su Alexa è
necessario convertirle in uno stream video con codec H264 (più leggero) o MPEG4. Dato che la
potenza dell'esp è limitata è meglio affidare questo compito al raspberry.

Lanciare un server rtsp sul raspberry, ad esempio https://github.com/aler9/rtsp-simple-server
(togliere i servizi inutili nella configurazione)
sudo apt-get install ffmpeg
Lanciare uno tra questi comandi sul raspberry per prendere il flusso della camera, convertirlo in
video e lanciare lo stream sul server rtsp

Formato H264 (più compresso)

ffmpeg -use_wallclock_as_timestamps 1 -i http://indirizzo_ip_esp32cam:8080 -
c:v libx264 -preset veryslow -tune zerolatency -movflags +faststart -pix_fmt
yuv420p -disposition:v:0 default -r 5 -g 1 -f rtsp
rtsp://indirizzo_ip_raspberry:8443/stream

Formato MPEG4

ffmpeg -use_wallclock_as_timestamps 1 -i http://192.168.1.254:8080 -c:v
mpeg4 -tune zerolatency -movflags +faststart -pix_fmt yuv420p -

https://github.com/ayufan/esphome-components#25-esp32_camera_web_server
https://github.com/aler9/rtsp-simple-server

Last update: 2021/10/01 10:40 projects:iotaiuto:doorbell https://wiki.csgalileo.org/projects/iotaiuto/doorbell

https://wiki.csgalileo.org/ Printed on 2026/01/12 17:28

disposition:v:0 default -r 5 -g 1 -f rtsp
rtsp://indirizzo_ip_raspberry:8443/stream

Modificare framerate (-r) e gop (-g) a piacere

Mentre ffmpeg è in esecuzione è importante guardare il numero di frame duplicate e droppate da
ffmpeg nella barra di stato, e aggiustare il framerate di conseguenza (modificarlo anche nella
configurazione esphome della camera)

Il preset veryslow comprime molto e tiene leggera la banda. Se la speed di ffmpeg va sotto a x1 si
può usare un preset più veloce per alleggerire il lavoro al processore.

Monocle

Installare la skill Monocle su Alexa
Accedere a https://portal.monoclecam.com/
Aggiungere un feed e configurarlo <code> URL: rtsp:iplocaleraspberry:8443/stream Name:
citofono Authentication: None Video resolution: Quella inserita nella configurazione della
camera Video codec: H264 Audio codec: None Tags: @proxy </code> L'url è quello del server
rtsp su cui ffmpeg manda il video convertito Aggiungere il tag @proxy solo se si vuole utilizzare
il Monocle Gateway, ovvero il sistema di redirect che esce dalla rete locale per far arrivare il
flusso dal dominio di monocle Per installare Monocle Gateway sul raspberry seguire questa
guida: https://monoclecam.com/monocle-gateway/install/linux-raspi

From:
https://wiki.csgalileo.org/ - Galileo Labs

Permanent link:
https://wiki.csgalileo.org/projects/iotaiuto/doorbell

Last update: 2021/10/01 10:40

https://portal.monoclecam.com/
https://monoclecam.com/monocle-gateway/install/linux-raspi
https://wiki.csgalileo.org/
https://wiki.csgalileo.org/projects/iotaiuto/doorbell

	Doorbell
	RTSP Server
	HTTP Server
	Conversione del video
	Monocle

