projects:plate

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
projects:plate [2022/03/14 10:35] – removed sscipioniprojects:plate [2022/06/20 14:19] (current) – old revision restored (2022/03/12 21:34) 154.54.249.201
Line 1: Line 1:
 +====== yolo train ======
 +
 +<code>
 +git clone https://github.com/puzzledqs/BBox-Label-Tool.git
 +</code>
 +
 +<file python convert.py>
 +import os
 +from os import walk, getcwd
 +from PIL import Image
 +
 +classes = ["targa"]
 +
 +def convert(size, box):
 +    dw = 1./size[0]
 +    dh = 1./size[1]
 +    x = (box[0] + box[1])/2.0
 +    y = (box[2] + box[3])/2.0
 +    w = box[1] - box[0]
 +    h = box[3] - box[2]
 +    x = x*dw
 +    w = w*dw
 +    y = y*dh
 +    h = h*dh
 +    return (x,y,w,h)
 +    
 +    
 +"""-------------------------------------------------------------------""" 
 +
 +""" Configure Paths"""   
 +mypath = "Labels/001/"
 +outpath = "Labels/output/"
 +
 +
 +cls = "001"
 +
 +
 +wd = getcwd()
 +list_file = open('%s/%s_list.txt'%(wd, cls), 'w')
 +
 +""" Get input text file list """
 +txt_name_list = []
 +for (dirpath, dirnames, filenames) in walk(mypath):
 +    print(filenames)
 +    txt_name_list.extend(filenames)
 +    break
 +print(txt_name_list)
 +
 +""" Process """
 +for txt_name in txt_name_list:
 +    # txt_file =  open("Labels/stop_sign/001.txt", "r")
 +    
 +    """ Open input text files """
 +    txt_path = mypath + txt_name
 +    print("Input:" + txt_path)
 +    txt_file = open(txt_path, "r")
 +    lines = txt_file.read().split('\r\n'  #for ubuntu, use "\r\n" instead of "\n"
 +    
 +    """ Open output text files """
 +    txt_outpath = outpath + txt_name
 +    print("Output:" + txt_outpath)
 +    txt_outfile = open(txt_outpath, "w")
 +    
 +    
 +    """ Convert the data to YOLO format """
 +    ct = 0
 +    for line in lines:
 +        #print('lenth of line is: ')
 +        #print(len(line))
 +        #print('\n')
 +        if(len(line) >= 2):
 +            ct = ct + 1
 +            print(line + "\n")
 +            elems = line.split(' ')
 +            print(elems)
 +            cls_id = elems[0].split('\n')[0]
 +            xmin = elems[0].split('\n')[1]
 +            xmax = elems[2]
 +            ymin = elems[1]
 +            ymax = elems[3][:-1]
 +            #
 +            img_path = str('%s/Images/%s/%s.JPEG'%(wd, cls, os.path.splitext(txt_name)[0]))
 +            #t = magic.from_file(img_path)
 +            #wh= re.search('(\d+) x (\d+)', t).groups()
 +            im=Image.open(img_path)
 +            w= int(im.size[0])
 +            h= int(im.size[1])
 +            #w = int(xmax) - int(xmin)
 +            #h = int(ymax) - int(ymin)
 +            # print(xmin)
 +            print(w, h)
 +            b = (float(xmin), float(xmax), float(ymin), float(ymax))
 +            bb = convert((w,h), b)
 +            print(bb)
 +            txt_outfile.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 +
 +    """ Save those images with bb into list"""
 +    if(ct != 0):
 +        list_file.write('%s/images/%s/%s.JPEG\n'%(wd, cls, os.path.splitext(txt_name)[0]))
 +                
 +list_file.close() 
 +</file>
 +
 +
 +Train.txt Text.txt
 +
 +
 +<file python process.py>
 +import glob, os
 +
 +# Current directory
 +current_dir = os.path.dirname(os.path.abspath(__file__))
 +
 +# Directory where the data will reside, relative to 'darknet.exe'
 +path_data = '*IMAGE DIRECTORY*'
 +
 +# Percentage of images to be used for the test set
 +percentage_test = 10;
 +
 +# Create and/or truncate train.txt and test.txt
 +file_train = open('train.txt', 'w')  
 +file_test = open('test.txt', 'w')
 +
 +# Populate train.txt and test.txt
 +counter = 1  
 +index_test = round(100 / percentage_test)  
 +for pathAndFilename in glob.iglob(os.path.join(current_dir, "*.JPEG")):  
 +    title, ext = os.path.splitext(os.path.basename(pathAndFilename))
 +
 +    if counter == index_test:
 +        counter = 1
 +        file_test.write(path_data + title + '.JPEG' + "\n")
 +    else:
 +        file_train.write(path_data + title + '.JPEG' + "\n")
 +        counter = counter + 1
 +</file>
 +
 +Put images inside BBox-Label-Tool/Images/001/
 +convert to JPEG and delete old images
 +<code>
 +mogrify -format JPEG *.jpg
 +rm *.jpg
 +</code>
 +
 +Go to main folder and run python main.py
 +<code>
 +python main.py
 +</code>
 +
 +Write 001 inside Image Dir box and load
 +
 +Create a label for each image
 +
 +After that, exit and create a new directory inside Label
 +<code>
 +mkdir output
 +</code>
 +Run convert.py
 +<code>
 +python convert.py
 +</code>
 +
 +Now create test.txt and train.txt with process.py
 +<code>
 +python process.py
 +</code>
 +<code>
 +├── Images (input)
 +│   ├── 001
 +│   │   ├── 20180319_113309.JPEG
 +│   └── targa
 +├── Labels (output)
 +│   ├── 001
 +│   │   ├── 20180319_113309.txt
 +│   └── output
 +│       ├── 20180319_113309.txt
 +</code>
 +====== Darknet ======
 +<code>
 +git clone https://github.com/pjreddie/darknet
 +cd darknet
 +make
 +</code>
 +
 +Copy train.txt and test.txt inside darknet/cfg/
 +
 +Create 3 files:
 +obj.data
 +obj.names
 +obj.cfg
 +
 +<file obj.data>
 +classes= *NUMBER CLASSES*
 +train  = *TRAIN DIRECTORY+
 +valid = *TEST DIRECTORY*
 +names = obj.names
 +backup = *BACKUP FOLDER*
 +</file>
 +
 +<file obj.names>
 +*CLASS NAME*
 +</file>
 +
 +Copy yolov2-tiny.cfg and change [region]:classes to 
 +classes = *NUMBER CLASSES*
 +filters = (*NUMBER CLASSES* +5)*5
 +
 +
  
  • projects/plate.1647250523.txt.gz
  • Last modified: 2022/03/14 10:35
  • by sscipioni