Show pageOld revisionsBacklinksAdd to bookExport to PDFBack to top This page is read only. You can view the source, but not change it. Ask your administrator if you think this is wrong. ====== K80 ====== <code="bash"> pacman -S nvidia-470xx-dkms nvidia-470xx-settings nvidia-470xx-util pacman -U https://archive.archlinux.org/packages/c/cuda/cuda-11.4.2-1-x86_64.pkg.tar.zst </code> nvidia-smi <code> +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.256.02 Driver Version: 470.256.02 CUDA Version: 11.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 Tesla K80 Off | 00000000:03:00.0 Off | 0 | | N/A 53C P0 61W / 149W | 0MiB / 11441MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ | 1 Tesla K80 Off | 00000000:04:00.0 Off | 0 | | N/A 41C P0 72W / 149W | 0MiB / 11441MiB | 86% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+ </code> <code="bash"> # cat /proc/driver/nvidia/version NVRM version: NVIDIA UNIX x86_64 Kernel Module 470.256.02 Thu May 2 14:37:44 UTC 2024 GCC version: gcc version 14.1.1 20240522 (GCC) # nvcc -V nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2021 NVIDIA Corporation Built on Sun_Aug_15_21:14:11_PDT_2021 Cuda compilation tools, release 11.4, V11.4.120 Build cuda_11.4.r11.4/compiler.30300941_0 </code> samples <code="bash"> git clone --depth 1 --branch v11.4.1 https://github.com/NVIDIA/cuda-samples.git /opt/cuda-samples cd /opt/cuda-samples cd Samples/deviceQuery/ make </code> deviceQuery <code="bash"> cd /opt/cuda-samples/bin/x86_64/linux/release ./deviceQuery ./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 2 CUDA Capable device(s) Device 0: "Tesla K80" CUDA Driver Version / Runtime Version 11.4 / 11.4 CUDA Capability Major/Minor version number: 3.7 Total amount of global memory: 11441 MBytes (11997020160 bytes) (013) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores GPU Max Clock rate: 824 MHz (0.82 GHz) Memory Clock rate: 2505 Mhz Memory Bus Width: 384-bit L2 Cache Size: 1572864 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total shared memory per multiprocessor: 114688 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Managed Memory: Yes Device supports Compute Preemption: No Supports Cooperative Kernel Launch: No Supports MultiDevice Co-op Kernel Launch: No Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 1: "Tesla K80" CUDA Driver Version / Runtime Version 11.4 / 11.4 CUDA Capability Major/Minor version number: 3.7 Total amount of global memory: 11441 MBytes (11997020160 bytes) (013) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores GPU Max Clock rate: 824 MHz (0.82 GHz) Memory Clock rate: 2505 Mhz Memory Bus Width: 384-bit L2 Cache Size: 1572864 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total shared memory per multiprocessor: 114688 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Managed Memory: Yes Device supports Compute Preemption: No Supports Cooperative Kernel Launch: No Supports MultiDevice Co-op Kernel Launch: No Device PCI Domain ID / Bus ID / location ID: 0 / 4 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > > Peer access from Tesla K80 (GPU0) -> Tesla K80 (GPU1) : Yes > Peer access from Tesla K80 (GPU1) -> Tesla K80 (GPU0) : Yes deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.4, CUDA Runtime Version = 11.4, NumDevs = 2 Result = PASS </code> ===== pytorch ===== <code="bash"> pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cu118 python -c "import torch; print(torch.__version__); print(torch.cuda.is_available());" # 2.3.1+cu118 # True </code> ===== ultralitycs ===== <code="bash"> pip install ultralytics python -c "import ultralytics; print(ultralytics.utils.checks.cuda_is_available());" # True </code> tips/k80.txt Last modified: 2024/07/19 07:36by sscipioni